n^2=1440

Simple and best practice solution for n^2=1440 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n^2=1440 equation:



n^2=1440
We move all terms to the left:
n^2-(1440)=0
a = 1; b = 0; c = -1440;
Δ = b2-4ac
Δ = 02-4·1·(-1440)
Δ = 5760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5760}=\sqrt{576*10}=\sqrt{576}*\sqrt{10}=24\sqrt{10}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{10}}{2*1}=\frac{0-24\sqrt{10}}{2} =-\frac{24\sqrt{10}}{2} =-12\sqrt{10} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{10}}{2*1}=\frac{0+24\sqrt{10}}{2} =\frac{24\sqrt{10}}{2} =12\sqrt{10} $

See similar equations:

| -4(x+3)=-51 | | 2^n=1440 | | 6x-3+8x=13 | | 3x/2=78 | | x=63-15(4) | | x=15-63+4x | | 5c+28=-2c+7 | | x=15-63/4 | | 2(-3+2x)=2x+4 | | N-12x(8+4)=N | | √2x−3−7=−4 | | 2(1-3)+3=6x-5 | | 7x+18+5x-6=180 | | k+89.2=−47.62 | | x+(3x-15)=63 | | 3/4+x-15=63 | | X2-16x-16=0 | | 4x-15+x=63 | | 0.0975x+x=37.26 | | 3x-15=63+x | | 2x^2+10=-62 | | x+9=3x-29 | | 24+(4x-6)+(4x-6)=36 | | 9x-40+7x-4=90 | | 5.5x3.6= | | 3x+x-15=63 | | 2x3=x6+1 | | 8x-81=x+18 | | 5x-5+8=29 | | 4x-12=3x=9 | | 7x+13=2(2x−5)+3x+23 | | 5+13x=29 |

Equations solver categories